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Abstract

Efficient numerical and parallel methods have been used at Argonne National Labora-
tory (ANL) to develop petascalable software packages for beam dynamics simulations. This
paper is an summary of the numerical methods and parallel algorithms used and developed
in the past five years at ANL. It is an extension to the paper “Developing petascalable
algorithms for beam dynamics simulations,” on proceeding of the first International Parti-
cle Accelerator Conference IPAC-2010 [33]. In this paper, numerical methods and parallel
algorithms for our beam dynamics simulations are summarized. These include the standard
particle-in-cell (PIC) method, direct Vlasov solvers and scalable Poisson solvers. Efficient
parallel algorithms for these methods on supercomputers have been implemented and have
successfully used tens of thousands processors on the IBM Blue Gene/P system at the
Argonne Leadership Computing Facility (ALCF). Among them, scalable Poisson solvers
in three dimensions, to account for space charge effects, are the most challenging. Several
methods have been used to solve Poisson’s equation efficiently in different situations. The
ALCF provides a suitable environment to perform large scale beam dynamics simulations.
High-order numerical methods have been adopted to increase the accuracy. Domain de-
composition methods have been used for parallelizing the solvers, and good scaling has
been achieved. Preliminary results for the direct Vlasov solvers have been obtained in up to
four dimensions. The parallel beam dynamics code PTRACK, which uses the PIC method
to solve Poisson’s equation, has been used as a workhorse for end-to-end simulations and
large-scale design optimizations for linear accelerators.
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1 Introduction

Beam dynamics simulations (BDS) play a significant role in accelerator model-
ing, they are important for both the design and operation phases of an accelerator.
Computational beam dynamics have become more powerful with the development of
supercomputers capable of simulating more complex effects and phenomena in beam
physics. As the computing era enters petascale, more accurate accelerator simulations
can be conducted. In order to efficiently use this computing power, we need to develop
more efficient numerical and parallel methods. This paper introduces our efforts in
this direction that is to apply efficient numerical methods and develop scalable meth-
ods necessary for large scale BDS. We explain various numerical and parallel methods
in a way that is easy to understand, and we direct the interested reader to related
journals for more detailed information [28,30–32]. These efforts are limited and still
on going, and there are many other efficient numerical methods not been included.
We will try and report them in the future studies.

Charged particle beams are at the core of accelerator technology. Since charged
beam is a kind of plasma, most of the methods used for plasma simulations could be
adopted and used for charged beam simulations. The methods for simulating plasma
can be divided into three categories: microscopic models, kinetic models, and fluid
models. In the microscopic model, each charged particle is described by six variables
(x, y, z, vx, vy, vz). Therefore, for N particles, there are 6N variables in total. Since
each two particles have mutual force interaction, this leads to a group of 6N equa-
tions which has 6N variables in each of them. Solving the beam dynamics equation
in 6N dimensions exceeds the capability of current supercomputers for large N. The
fluid model is the simplest, because it treats the plasma as a conducting fluid with
electromagnetic forces exerted on it. This leads to solving the magnetohydrodynam-
ics (MHD) equations in 3D (x, y, z); MHD techniques solve for average quantities,
such as density and charge. Since charged beams are often accelerated and focused
in bunches makes the fluid model, which is successful to describe a continuous flow
of fluid, not suitable for charged beam simulations. Between these two models is the
kinetic model, which is used by most current beam dynamics simulations. This model
obtains the charge density function by solving the Boltzmann or Vlasov equations in
6 dimensions (x, y, z, vx, vy, vz). The Vlasov equation describes the evolution of a sys-
tem of particles under the effects of self-consistent electromagnetic fields. The Vlasov
equation can be solved in two ways. The dominant way is the so-called particle-in-
cell (PIC) method, which uses the motion of the particles along the characteristics
of the Vlasov equation using an Euler-Lagrange approach. The PIC method is fast
and easy to implement; and, with the arrival of petascale computing, one-to-one sim-
ulation can be realized for low-density beams. But for more intensive beams, the
PIC method still uses macro particles, making it difficult to capture detailed beam
structure. Furthermore, noise is associated with the finite number of particles in the
simulations. Another way to solve the kinetic model is to solve the Vlasov equation
directly, which requires solving in 2D dimensions (D is the dimension of the physi-
cal space). For example, in order to simulate beams in three dimensions, the Vlasov
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equation must be solved in 6 dimensions. Clearly, petascale computing is required,
and petascale algorithms are critical to a successful solution. During the past 5 years,
we have applied efficient numerical methods and developed several software packages
to meet these demands. This paper presents our efforts in applying these efficient
numerical methods to develop petascale software packages for BDSs for linear accel-
erators. The paper is organized as follows. The numerical methods are explained in
Section 2 and the parallel methods in Section 3. Further comparisons and discussions
of these numerical methods are presented in Section 4. We draw our conclusions in
Section 5.

2 Numerical Methods

In this section, we present numerical methods for BDS. These methods include
PIC and direct Vlasov methods. Two methods for time integration of the Vlasov
equation are also presented. Since space charge effects are included in both the PIC
and the Vlasov solutions, the numerical methods for solving the Poisson’s equation
is discussed separately at the end of the section.

2.1 Particle-in-Cell Method

The particle-in-cell method is the most widely used approach in the kinetic
model for BDS. It uses macro particles to represent the real charged particles in the
beam, integrating the beam dynamics equations under external and internal forces.
The external force usually comes from electromagnetic fields of accelerator compo-
nents and the internal force comes from the space charge effect, which is accounted
for by solving the Poisson’s equation on a fixed grid. Considering the relativistic
effect, the beam dynamics equation should be solved in the appropriate coordinate
system. Many ray-tracing codes are available, such as RAYTRACE, PARMILA and
IMPACT. Another approach is to use the matrix formalism for the design and study
of beam-optics systems, for example, TRANSPORT, TRACE3D, or GIOS. We will
focus here on the ray-tracing method. A ray-tracing or particle-tracking code has
many advantages over a matrix-based code, we mention for example: (i) the external
field can be represented more accurately within the physical aperture of the device
including fringe fields and field superpositions; (ii) the 6D particle coordinates are
known at any point along the accelerator; (iii) non-electromagnetic elements, such
as beam degraders or strippers, can be accurately simulated; (iv) beam space charge
fields, especially for multi-components ion beams, can be calculated with high accu-
racy; and (v) beam losses can be calculated in the presence of complex sets of field
errors and device misalignments. Our BDS research is based on the beam dynamics
code TRACK, developed in the Physics Division at Argonne National Laboratory
over the last 10 years. The basic method is presented below.
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The transport of a charged particle is described by the equation of motion:

d~p

dt
= Q( ~E + ~v × ~B), (1)

,where ~p is the particle momentum and Q is its charge; ~E = ~Eext+ ~Eint and ~B = ~Bext+
~Bint are the sums of external and internal electric and magnetic fields, respectively;
and ~v is the particle velocity. TRACK uses 6 independent variables for tracking the
phase-space coordinates of the particles, (x, x′ = dx/dz, y, y′ = dy/dz, β = v/c, φ),
where v =| ~v | and φ is the particle phase shift with respect to a reference particle.
Since the relativistic effect is being considered, the set of equations used for the
step-by-step integration routine is

dx

dz
= x′,

dy

dz
= y′,

dφ

dz
=

2πf0h

βc
(2)

dx′

dz
= χ

Q

A

h

βγ
[
h

βc
(Ex − x′Ez) + x′y′Bx − (1 + x′2)By + y′Bz] (3)

dy′

dz
= χ

Q

A

h

βγ
[
h

βc
(Ey − y′Ez) − x′y′Bx + (1 + y′2)Bx − x′Bz] (4)

dβ

dz
= χ

Q

A

h

βγ3c
(x′Ex + y′Ey + Ez), (5)

where γ = 1/
√

1 − β2; h = 1/
√

1 + x′2 + y′2; χ = 1/mac
2; A is the mass number; ma

is the atomic mass unit; and Bx, By, Bz, Ex, Ey, Ez are the components of magnetic
and electric fields. TRACK uses the 4th order Runge-Kutta method to integrate the
equation (2), every time step is subdivided into 4 substeps. Currently, the external
electromagnetic fields are computed from commercial software packages, such as CST
MWS, EMS, ANSYS, etc. Several Poisson solvers have been developed and will be
introduced in the following sections. The code TRACK supports the following elec-
tromagnetic elements for acceleration, transport and focusing of multi-component ion
beams:

• Any type of RF accelerating resonator with realistic 3D fields.
• Radio Frequency Quadrupoles (RFQ).
• Solenoids with fringing fields.
• Bending magnets with fringing fields.
• Electrostatic and magnetic multipoles (quadrupoles,sextupoles, ... ) with fringing

fields.
• Multi-harmonic bunchers.
• Axial-symmetric electrostatic lenses.
• Entrance and exit of a high voltage (HV) deck.
• Accelerating tubes with DC distributed voltage.
• Transverse beam steering elements.
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• Stripping foils or films (for FRIB, not general yet).
• Horizontal and vertical jaw slits for beam collimation.
• Static ion-optics devices with both electric and magnetic
• realistic three-dimensional fields.

More details can be found in [3,28].

2.2 Direct Vlasov Method

PIC solvers have their shortcomings, such as the noise associated with a finite
number of macro particles and the difficulty in describing the beam tail and eventual
beam halo formation. An alternative approach, which has the potential to compen-
sate for the limitations of the PIC method, is to solve the Vlasov equation directly.
The beam is described as a distribution function in the six-dimensional phase space
(x, y, z, vx, vy, vz). The evolution of the distribution function of particles f(~x,~v, t) in
the phase space (~x,~v) ∈ Rd × Rd, with d =1,2,3 and time t, is given by the dimen-
sionless Vlasov equation,

∂f(~x,~v, t)

∂t
+ ~v(~x, t) · ∇xf(~x,~v, t) + ~F (~x,~v, t) · ∇vf(~x,~v, t) = 0, (6)

where the force field ~F (~x,~v, t) can be coupled to the distribution function f . For the
Vlasov-Poisson system, this coupling is done through the macroscopic beam density
ρ.

ρ(~x,~v, t) =
∫

Rd

f(~x,~v, t)dv (7)

The force field, which depends only on t and ~x, makes the system nonlinear. It
is determined by solving Poisson’s equation,

~F (~x,~v, t) = ~E(~x, t), ~E(~x, t) = −∇~xφ(~x, t), −∆~xφ(~x, t) = ρ(~x, t) − 1, (8)

where ~E is the electric field and φ the electric potential.

Since the Vlasov equation could involve higher dimensions than the PIC method,
a time-splitting scheme has been used for time integration, as proposed by Cheng and
Knorr [5]. This transforms the Vlasov equation from high dimension to two lower
dimension equations. Details are given in the following subsections.
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Fig. 1. Modal bases (left) and mesh (right) on quadrilateral.

2.2.1 Vlasov Equation in 1P1V Phase-Space

In 1P1V phase space, the normalized Vlasov equation can be written as follows
[1].

∂f(x, v, t)

∂t
+ v(x, t)

∂f(x, v, t)

∂x
+ E(x, t)

∂f(x, v, t)

∂v
= 0 (9)

E(x, t) =−∂φ(x, t)

∂x
,−∆φ(x, t) =

∂E(x, t)

∂x
= ρ(x, t) − 1 (10)

ρ(x, t) =

∞
∫

−∞

f(x, v, t)dv (11)

The distribution function f(x, v, t) is expanded on a structured quadrilateral
grid, as shown on the right of Fig. 1. Modal bases, shown on the left of Fig. 1, have
been used. A semi-Lagrangian method, explained in Section 2.3, was also used. To
increase the accuracy, we have adopted the algorithm proposed in [25]. Each time
step has been subdivided into three substeps: the first and the third substeps are in
velocity space, and the second substep is in physical space. The detailed procedure
follows.
. . . . . .

Do istep=1,nstep:
- Compute jn = q

∫

fn(xn, vn)vndv;
- Compute Epred = En − jn∆t from Ampere’s law;
- Do until | En+1 − Epred |< ε

· Substep1: vn+1/2 = vn+1 − Epred(xn+1)∆t/2
· Substep2: xn = xn+1 − vn+1/2∆t;
· Substep3: vn = vn+1/2 − En(xn)∆t/2;
· Interpolate to compute charge density;
· Solve Poisson’s equation for En+1;
· Update new Epred = En+1.

- Enddo
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Enddo
. . . . . .

Other methods can be developed to increase the order of accuracy for time
integration. The interpolation is performed on each quadrilateral, and its accuracy
depends on the polynomial order used. During each time step iteration, Poisson’s
equation must be solved on a structured grid. The method is explained in Subsection
2.5.3. Detailed information can be found in [31].

2.2.2 Vlasov Equation in 2P2V Phase-Space

Next, we study the Vlasov equation in higher dimensions, 2P2V. In beam dy-
namics, a simplified model has been developed in 2P2V [12] as a paraxial model based
on the following assumptions:

• The beam is in a steady state: all particle coordinates derivatives with respect to
time vanish.

• The beam is sufficiently long so that longitudinal self-consistent forces can be
neglected.

• The beam is propagating at constant velocity vb along the propagation axis z.
• Electromagnetic self-forces are included.
• ~p = (px, py, pz), pz ∼ pb and px, py � pb, where pb = γmvb is the beam momentum.

It follows in particular that

β ≈ βb = vb/c, γ ≈ γb = (1 − β2

b )
−1/2. (12)

• The beam is thin: the transverse dimensions of the beam are small compared to
the characteristic longitudinal dimension.

The paraxial model can be written as

∂f

∂z
+

~v

vb

· ∇~xf +
q

γbmvb

(− 1

γ2
b

∇Φs + ~Ee + (~v, vb)
T × ~Be) · ∇~vf = 0 (13)

coupled with the Poisson’s equation

−∆~xΦ
s =

q

ε0

∫

R2

f(z, ~x,~v)d~v, (14)

where Φs is the self-consistent electric potential due to space charge; ~Ee and ~Be are
the external electric and magnetic fields, respectively; and vb is the reference beam
velocity.

In 2P2V simulations, since it is expensive to interpolate in four dimensions,
the distribution function is updated after each substep. The distribution function
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Fig. 2. Semi-Lagrangian method (left) and Shur complement method (right)

f(x, y, vx, vy, t) is expanded on an unstructured triangular grid, as shown in the right
side of Fig. 4. Nodal bases shown on the left of Fig. 4 have been used. A Discontinuous
Galerkin (DG) method, explained in Section 2.4, has been used. Time splitting is the
same as that proposed by Cheng and Knorr [5]. Each time step has been divided
into three substeps: the first and third substeps are in physical space, and the second
substep is in velocity space. The detailed procedure follows.
. . . . . .

Do istep=1,nstep:
- Substep 1: Perform a half time step shift in the (x,y) plane: f ∗(~x,~v) = f(tn, ~x −

~v∆t/2, ~v)
- Compute the electric field at time tn+1/2 by substituting f ∗ in the Poisson’s

equation;
- Substep 2: Perform a full time step shift in the (vx, vy) plane: f ∗∗(~x,~v) = f ∗(~x,~v−

~E(tn+1/2, ~x)∆t);
- Substep 3: Perform a second half time step shift in the (x,y) plane: f(tn+1, ~x, ~v) =

f ∗∗(~x − ~v∆t/2, ~v);
Enddo

. . . . . .

On each two-dimensional space, the Vlasov equation transforms into a linear
transport equation in 2D. The Semi-Lagrangian method has been used in 2P2V as in
1P1V. Instead of solving Poisson’s equation and interpolating in 1D, they have been
solved in 2D on structured quadrilaterals. Details can be found in [31]. As for the
transport equation, researchers have successfully applied the discontinuous Galerkin
method to transient Maxwell and Euler equations in 2D and 3D. Therefore, instead
of using the semi-Lagrangian method, DG has been adopted on unstructured grid.
Similarly, during the time step iteration, Poisson’s equation must be solved on an
unstructured grid. The method is explained in Subsection 2.5.3. Detailed information
can be found in [32].
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2.3 Semi-Lagrangian Method (SLM)

As shown on the left of Fig. 2, the semi-Lagrangian method consists of comput-
ing the distribution function at each grid point by following the characteristic curves
backward and interpolating the distribution function at the previous time step. Ac-
cording to Liouville’s theorem, the phase-space distribution function is constant along
the trajectories of the system. Therefore, the interpolation at the previous time step
equals the function value at the present time step. In contrast to the Eulerian frame-
work, the semi-Lagrangian scheme allows the use of large time-steps without losing
stability. The limitations for stability are that trajectories should not cross and that
particles should not “overtake” one another. Therefore, the choice of time step size
in the Semi-Lagrangian scheme is limited only by numerical accuracy.

2.4 Discontinuous Galerkin Method (DGM)

In 1973, Reed and Hill [21] introduced the first discontinuous Galerkin method
for hyperbolic equations. Since that time there has been active development of DG
methods for hyperbolic and nearly hyperbolic problems, resulting in a variety of meth-
ods. DG methods are locally conservative, stable, and high-order accurate methods.
Originally, the DG method was realized with finite-difference and finite-volume meth-
ods. Later, it was extended to finite-element, hp-finite element, and spectral element
methods. These make it easy to handle complex geometries, irregular meshes with
hanging nodes, and approximations that have polynomials of different degrees in
different elements. These properties have brought the DG method into many disci-
plines of scientific computing, such as computational fluid dynamics, especially for
compressible flows, computational electromagnetics, computational plasma, semicon-
ductor device simulation, chemical transport, and flow in porous media, as well as
to a wide variety of problems such as Hamilton-Jacobi equations, elliptic problems,
elasticity, and Korteweg-deVries equations. More details can be found in [6–8,17].

In the literature, the DG method has been used only in up to three dimensions.
Since the Vlasov equation could be in higher dimensions, it brings new challenges to
the DG method. Based on our successful experience of using a time-splitting scheme
for solving the Vlasov equation directly [31], we have tried the DG method to sub-
stitute the semi-Lagrangian method in each substep, which is advanced in 2D phase
spaces separately. Suppose that a 4D phase space ΩK is composed of the tensor prod-
uct of two 2D phase spaces, Ω1

K1 × Ω2

K2, and the total degrees of freedom (DOF) in
Ωi

Ki is F i, then the total DOF in ΩK is F 1 × F 2.

Substituting t for z in Equation (13), we can write the time-splitting scheme
combined with the DG method as follows:
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∂f(~x,~v, t)

∂t
+

1

2
∇~x · [~V (x, y)f(~x,~v, t)] = 0, (15)

∂f(~x,~v, t)

∂t
+ ∇~v · [~U(vx, vy)f(~x,~v, t)] = 0, (16)

∂f(~x,~v, t)

∂t
+

1

2
∇~x · [~V (x, y)f(~x,~v, t)] = 0. (17)

The velocity in physical and velocity spaces is

~V (x, y)=
~v

vb
=

(vx, vy)

vb
, (18)

~U(vx, vy) =
q

γbmvb
[− 1

γ2
b

∇φ(x, y) + ~E(x, y)]. (19)

Another challenge in applying the DG method to solve the Vlasov equation is
that the computer time increases as N2, where N is the total DOF in physical and
velocity spaces. Since in each subspace the transport equation is totally decoupled, it
is well suited for large-scale parallel computing. Therefore, a highly scalable scheme
could be developed, and the DG method matches this requirement, offering the added
promise of high efficiency. More details can be found in [32].

2.5 Methods for Solving Poisson’s Equation

Since the space charge effects are accounted for by solving the Poisson’s equa-
tion, several numerical methods have been adopted. Each has advantages in specific
conditions, which will be explained separately in the following. Poisson’s equation is
a standard second-order elliptic partial differential equation, which has been studied
extensively in scientific computing. Some of the methods have been reported in our
previous publications and will be presented here briefly. The other methods will be
presented in more detail. The most common methods for solving the Poisson’s equa-
tion, such as finite difference method, finite volume method, etc, are not included in
the paper, since they are available in most text book of scientific computing. The
methods presented below are numerical methods of high order accuracy.

2.5.1 Fourier Spectral Method (FSM)

The Fourier spectral method is the standard method for solving Poisson’s equa-
tion in a box region in a cartesian coordinate system. The potential has been ex-
panded in Fourier series in all three directions. Either periodic or Dirichlet boundary
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conditions can be applied in all three directions.

φ(x, y, z, t) =
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

φ̂(m, p, n, t)e−iαmxe−iβpye−iγnz (20)

Then the Poisson’s equation can be expressed as:

f(x, y, z, t) = ∆φ(x, y, z, t) = ∇2φ(x, y, z, t)

=
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

f̂(m, p, n, t)e−iαmxe−iβpye−iγnz

= −
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

K(m, p, n)φ̂(m, p, n, t)e−iαmxe−iβpye−iγnz (21)

K(m, p, n) = α2m2 + β2p2 + γ2n2 (22)

From this it is easy to see that φ̂(m, p, n, t) = f̂(m, p, n, t)/K(m, p, n). Parallel
algorithms for this method are given in Subsection 3.3.1.

2.5.2 Fourier hp-Finite Element Method (Fhp-FEM)

Since most accelerating devices have round apertures, solving Poisson’s equation
in a cylindrical coordinate system (CYLCS) is more appropriate in this case. In
CYLCS, Poisson’s equation has the following form:

∇2φ(r, θ, z) =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
= − ρ

ε0

, (23)

where φ is the electrostatic potential, ρ is the charge density, and ε0 is the permittivity
of vacuum. The 3D mesh is shown on the left of Fig. 3. The 2D mesh in the (r,θ)
plane is shown on the right of Fig. 3. We use Gauss-Radau-Legendre quadrature
points [18] in the first element close to the center to avoid the 1/r singularity. In
this case, there are four unequal elements in the radial direction. Each element has
nine points, and each pair of adjacent elements share the boundary points. Periodic
boundary condition (B.C.) have been applied in the longitudinal and circumferential
directions, and a natural B.C. has been applied in the center of the cylinder. A
Dirichlet zero B.C. has been applied at r = r0, where r0 is the radius of the cylinder.

By transfroming from the (r, θ, z) space to the (r, m, n) space through Fourier
Transform, we obtain

1

r

∂

∂r
(r

∂φ̃

∂r
) − m2

r2
φ̃ − n2φ̃ = − ρ̃

ε0

(24)
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This yields a linear system of equations

A · φ̂ = f̂ (25)

where A is a (P + 1)× (P + 1) matrix generated by the left-hand side terms, and φ̂,
f̂ are (P+1)-component vectors, where p,q=0,1,2,...,P. The equation (25) is solved
directly as it is in one dimension. The size of A is not very large. Different Fourier
modes m and n can be located on different processor to parallelize the solution. It
will be explained in the next section and more details can be found in [30].

2.5.3 hp-Finite-Element Method (hpFEM)

The FEM originated in the 1940s. It was developed from elastic and structural
analysis for civil and aeronautical engineering. The accuracy of FEM can be increased
by using larger mesh, to be called h-FEM. It can also be improved by increasing the
order of the bases, which is called p-FEM. The combination of these two approaches
is called hp-FEM. It is an area in numerical methods which has attracted many com-
putational mathematician. The hp-FEM has shown many advantages over popular,
low-order methods in many applications [9,11,17,18,24]. The main advantages of hp-
FEM are its flexibility in handling complex geometry and its high-order accuracy.
Nearly all operations and data are local, including the derivative, interpolation, in-
tegration, solution of Poisson’s equation, and transformation between physical and
coefficient spaces. It can use two types of bases: nodal or modal bases. Both modal
and nodal hp-FEM have been successfully applied to solve Poisson’s and Vlasov equa-
tions. In our work, the modal hp-FEM uses a structured mesh in 2D, as shown on the
left of Fig. 1, while the nodal hp-FEM uses the unstructured mesh in 2D geometry
as shown on the right of Fig. 4.

With the Shur complement technique, the solution of a linear system A× x = b
can be divided into two parts for boundary and internal modes, as shown on the right
of Fig. 2. The boundary modes are solved iteratively by using a conjugate gradient
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method. The internal modes in each element can then be solved directly. The discrete
system for the Poisson equation can be written as follows:







Abb Cbi

CT
bi Aii













ub

ui





 =







fb

fi







, where b and i correspond to boundary and interior variables and ub and ui can be
solved separately by the following equations:

(Abb − CbiA
−1

ii CT
bi)ub = fb − CbiA

−1

ii fi (26)

ui = A−1

ii (fi − CT
biub) (27)

More details can be found in [9,18].

Since the Vlasov solver on an unstructured grid is built on the DG framework, It
is better to solve the Poisson’s equation with the DG method too. The method been
used in DG framework is called interior penalty (IP) method [2,10,26], more details
can be found in [32].

3 Parallel Methods

In order to use petascale supercomputers, the numerical methods explained
above must be parallelized. As in the preceding section, the parallel methods will
be explained in three subsections. Since the Poisson solver is of special importance
in BDS and its parallelization is the most challenging, it is explained separately.
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3.1 Parallel Method for PIC Software

A BDS has two components: particle tracking and space charge (SC) calculation.
For the PIC solver in PTRACK, we use domain decomposition only for the SC
component of the calculation, which is the parallel Poisson solver explained below.
The parallel algorithm for the PTRACK is shown in Fig. 5. At the beginning of the
calculation, the internally generated or read-in initial particle distribution is equally
distributed among all the processors. That is, each processor has only part of the
total particles. But each processor has information about the full external fields for
the beamline or accelerator element being simulated. The SC grid is also defined on
all the processors. Before every tracking step the internal SC fields of the beam must
be computed and combined with the external fields. The first step in the calculation
of SC fields is the particle charge deposition on the nodes of the SC grid. This is done
locally; that is, each processor deposits the charges of particles that are located on it.
At the end of this step, every processor will have a partial SC distribution including
only the charge of its particles. To calculate the SC distribution of the whole beam, we
sum the partial SC distributions on the SC grid using the “MPI Allreduce” routine
of the MPI Library [23], To use domain decompositions of the Poisson solver shown
in Fig. 7, we subdivide the full SC grid into smaller-scale SC grids using 1D, 2D,
and 3D space decompositions. Each processor will have a local SC grid containing
only part of the SC data. FSM has been used for all these three decompositions.
Since the FFT is a global transformation, in order to perform FFT in one direction
all data in that direction should be collected on one processor. Then after FFT,
they will be distributed back to their original processors. After solving the Poisson
equation, we have the solution in the form of potential data distributed on the local
grids of each processor. In order to have all potential on each processor, a second
global communication using “MPI Allreduce” will bring the potential data from the
local grids to the global grid to be ready for the tracking part of the calculation.
The complete procedure is summarized in Fig. 5. The domain decomposition method
has been used for the parallelization of other Poisson solvers, such as the Fourier
hp-Finite Element Method. More details can be found in [28].

3.2 Parallel Method for direct Vlasov Solvers

For 1P1V, which is equivalent to a 2D simulation, 1D domain decomposition in
both physical x and velocity vx space has been adopted. Two MPI communicators,
comx and comv, have been generated for operations in different spaces. For 2P2V
simulation using the structured grid, the parallel model performs 2D domain decom-
positions in both physical (x, y) and velocity (vx, vy) planes; therefore, completely 4D
domain decomposition has been used, as shown on the left of the Fig. 6. This makes it
easy to use a large number of processors and is particularly helpful for direct solution
of the Vlasov equation. Three splitting substeps are associated with different com-
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Fig. 6. Structured (left) and unstructured (right) grid in 2D plane

municators. This makes it possible to solve the Vlasov in high dimensions. In these
simulations, two more communicators, comxy and comvxvy, have been generated
for operations in different planes. The communicator comxy contains all processors
with the same (vx, vy) location, and comvxvy contains all processors with the same
(x, y) location. These two communicators are used for computing the beam statistics.
When using the unstructured grid, only two communicators can be created, which
are comxy and comvxvy, because it is impossible to distinguish x from y on the (x,
y) plane and vx from vy on the (vx, vy) plane. Details in each case can be found in
[31,32].
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3.3 Parallel Methods for Poisson Solvers

Because of the global nature of Poisson’s equation, involving the whole charge
distribution to calculate an effective self-field created by all the particles in the beam,
its parallelization is the most challenging part in developing scalable algorithms for
BDS. Especially when the grid is small and a large number of processors is used.
In this section, we summarize the parallel algorithms developed with the domain
decomposition method.

3.3.1 Parallel Method for FSM

Since FSM is the most popular method for solving Poisson’s equation, more work
has been devoted to this method. Three domain decomposition methods have been
implemented, as shown in Fig. 7. With the appropriate model, it is easy to use tens of
thousands of processors with a relatively small grid for the space charge calculation.
For example, if the grid used for Poisson’s equation is 323, then the maximum number
of processors that can be used is 32 for the 1D decomposition model, 322 = 1024 for
the 2D decomposition model and 323 = 32, 768 for the 3D decomposition model.
If the data is not located in one processor in any direction, a global MPI Alltoall
needs to be called to transfer the data into one processor. Another call is needed to
transfer back the data to their original processors. Good scaling has been obtained
with a relatively small grid for the space charge calculation, see [27–29].

3.3.2 Parallel Method for Fhp-FEM

For the Fhp-FEM in CYLCS, 2D domain decomposition has been developed,
as shown in Fig. 8. The model on the right has the benefit of solving the 1D linear
system A × x = b on each processor, as they are totally decoupled. While the model
on the left has to solve the boundary modes first, then the internal modes in each
elements in the r direction. Since the element number in the r direction is not very
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Fig. 8. Parallel models for the Fourier hp-finite element method

large, this model is also efficient and it is being used for BDS. It is also possible
to develop 3D domain decomposition, as was done for FSM, which can use a large
number of processors. Details can be found in [31].

3.3.3 Parallel Method for hp-FEM

Parallel Poisson solvers using hp-FEM are achieved by using the Shur comple-
ment technique, shown on the right of Fig. 2. The boundary mode, equation (26), has
been solved using an iterative conjugate gradient (CG) method, whereas the internal
mode of each element, equation (27), has been solved by the direct method. The
mesh should be partitioned appropriately so that all processors have approximately
the same numbers of elements to ensure load balance. In order to speedup the CG
method, an efficient preconditioner can be used. For the multigrid technique, both
the coarse and fine meshes use the same mesh partition. This makes it convenient
to perform prolongation and restriction operations on each element. A good mesh
partition is to minimize the modes located on the interfaces of different processors,
as this will reduce the communication cost during global operations. More details can
be found in [32].

4 Comparison and Discussion

In this section we compare the performance of the numerical methods presented
in the paper. The comparison may help to understand these methods in more depth.

4.1 PIC vs. DVM

The common point of PIC and DVM is that they both need to solve the Poisson’s
equation during each time step. PIC and DVM have many differences, however. PIC
uses a Lagrangian approach, while DVM uses an Euler approach. Using Lagrangian
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Fig. 9. Phase space for PIC (left) and Vlasov (right)

approach means that the macro particles are traced during acceleration. Using Euler
approach means that the probablility function in phase space is studied instead. As
shown in Fig. 9, PIC uses macro particles to represent a real beam, while DVM
uses fixed grid points. The left of Fig. 9 shows a beam bunch of 108 particles in
3D physical space. The middle and right of Fig. 9 show that each point in the 3D
physical space has a 3D velocity space associated with it. This makes DVM high
dimensional while in the PIC method a single macro-particle has a very well defined
space and velocity coordinates. In the PIC method, macro particles represent the
same number of real beam particles, while the distribution function has different
values on the grid points in DVM. Since PIC uses macro particles, the statistics
of the beam is obtained on particles, while it is obtained on grid points for DVM.
Moreover, PIC is at most in 3D, while DVM could be in 6D. In order to better
understand their relation, we can shrink the velocity space in DVM to just one point,
and transform the DVM grid in physical space to exact matching the beam bunch,
DVM now translates to PIC method suppose that the DVM distribution function
value at a grid point is equal to the particle numbers represented by the macro
particle located at that position. Another difference between PIC and DVM is that
DVM solves the transport equation in the velocity space, while PIC apply force kick to
represent the integration in the velocity space. This greatly simplify the method which
makes PIC easy to implement. From these comparisons, it is clear that both PIC and
DVM are just different numerical methods for solving the Vlasov equation. They
study same beam dynamics physics. Since macro particle represents same number of
real particles, PIC method is difficult to capture beam halo, where less than particle
number represented by one macro partile exists. DVM supposes to complement this
by using Euler approach, but large derivative and interpolation errors prohibit its use
in real applications. This needs more efficient numerical methods which can simulate
the real physics more accurately and efficiently. This will be investigated more in the
future.
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4.2 SLM vs. DGM

SLM and DGM are two efficient methods for time integration. Both methods
have strong stability. While DGM has stronger stability than the continuous Gar-
lekin method (CGM), SLM is supposed to be unconditionally stable. DGM has strict
limitation on the time step size while SLM is less limited. Therefore, with the ap-
propriate choice of the time step size, SLM could be more stable than DGM. Since a
beam is a concentrated bunch of particles, the distribution function could have sharp
structures; this makes the errors of interpolation and derivation much larger than
in usual plasma simulations. The greatest challenge comes from these large operator
errors. In practical, SLM is easier to develop than the DGM. For the parallelization,
as DG has completely independent bases on each element, the communication is less
except for the DG Poisson solver. While the SLM has to redistribute all back tracing
points on different processors, which makes it more complicated than DG. There is
also a load balancing problem in SLM, since only small portion of the phase space
has probability function larger than some value. Depending on the mesh partition,
usually most back tracing points are located on some processors. This wastes the
computing time, while DG has more balanced computing load as all processor have
equal mount of work to be done.

4.3 Poisson Solvers

Several numerical methods to solve Poisson’s equation have been presented
briefly. Among them, FSM is the most popular and efficient one. Since the Fast
Fourier Transform (FFT) algorithm can be used and public FFT libraries are easily
available. The drawback of FSM is the global characteristics of Fourier Transforma-
tion. This requires the data in one direction must locate on one processor to complete
the FFT. The large ratio of communication cost over the FFT cost makes the parallel
efficiency low on large number of processors. As the total time is small compared to
other time in PIC and direct Vlasov solvers, the overall parallel efficiency still good.
This fits in all three parallel methods been developed for FSM, especially the one
using 3D domain decomposition which can be run efficiently on tens of thousands of
processors. Fhp-FEM is designed for CYLCS, which gives a more accurate solution
for a cylindrical geometry because the B.C. is more precisely defined on a cylinder
wall. Since the hp-FEM has been used in the radial direction, this limit the number
of processors that can be used. The number of processors used in Fhp-FEM usually
is less than that of FSM. High-order accuracy can be achieved by hp-FEM Poisson
solvers when using high-order polynomials. Similar to FSM, there is some inherent
restriction on scalability. Since the modes on interface between elements is solved
globally through conjugate gradient method, the parallel efficiency usually become
worse when the number of processors increases. The parallel efficiency usually be-
comes better as the polynomial order increases for both CG and DG methods. The
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convergence of CG usually is better than the DG method. Using an unstructured
grid makes it easy to handle complex geometries, which also requires more work in
the development. These Poisson solvers are more or less effective in different config-
urations and the choice of the appropriate solver should be based on the geometry
and boundary conditions.

4.4 Structured vs. Unstructured meshes

Unstructured mesh is more appropriate for complex geometries, and finer mesh
can be generated in the central part of the beam. Both structured and unstructured
meshes can apply CG or DG methods, but of course the unstructured mesh is more
complicated to develop. One significant difference between structured and unstruc-
tured meshes for the 2P2V Vlasov solvers is that we don’t have access to the same
statistical quantities. As explained in the previous section for parallel models for
Vlasov solvers, using an unstructured mesh it is not possible to seperate the x and
y directions. There is no way to find all (x, vx) points for a given (y, vy) point. Sim-
ilarly There is no way to find all (y, vy) points for a given (x, vx) point. Therefore,
the statistical quantities XX ′

rms and Y Y ′

rms can not be calculated, while the statis-
tical quantities Xrms, Yrms, X ′

rms, and Y ′

rms can be obtained on both meshes. The
definitions of these statistics can be found in [31].

5 Summary

We presented a summary of efficient numerical and parallel methods used and
developed in our research for large scale beam dynamics simulations during the past
5 years at ANL. Hope it will be helpful to other researchers in accelerator simula-
tions. They have been explained in brief and readers should consult the cited journal
articles for more details. These numerical methods have been discussed in three cat-
egories: PIC, DVM, and Poisson solvers. Parallel methods for all of them have also
been described in following. These methods are intended to enable the numerical
methods to take advantage of petascale supercomputers. The parallel methods have
been implemented in software packages and successfully run on tens of thousands of
processors of the IBM Blue Gene/P at the Argonne Leadership Computing Facil-
ity. The parallel PIC solver, PTRACK, has been used for large-scale beam dynamic
optimization and real accelerator simulations. The parallel DVM solvers have been
developed in 1P1V and 2P2V simulations, they have provided much more detail in-
formation on the physics, such as halo generation and filamentation in low dimension
and with smooth initial distribution functions. Due to the large derivation and in-
terpolation errors, they are difficult being used in real accelerator simulations now.
More efficient numerical methods need to be developed to simulate complex beam
dynamics more accurately. This will be investigated more in the future. More ever,
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direct Vlasov solevrs have more potential applications in plasma physics. Necessary
for the success of PIC and VDM, several numerical methods for solving the Poisson’s
equation in different situations have been presented and compared. They are critical
to perform the large scale simulations of BDS. Overall, these numerical and parallel
methods serve as a basis for BDS, and they can be applied to more broad areas in
the future. The numerical methods discussed in this paper are only summary in our
research at ANL, there are many other efficient numerical methods which have not
been included. In the future, more efficient numerical methods will be adopted to
improve current BDS. At the same time, the current ones will be further optimized.
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